GPS Auto-Registration System

Gary Schlieckert 24 June 1998

Objectives of Auto-Registration

- Improve the effectiveness of artillery rounds in current inventory
 - Increased firepower and survivability
 - Reduced logistics burden
- Force structure compatibility
 - Fuze module form factor per NATO standard
 - No change to inductive fuze setter
 - Minimum impact on platforms
 - Fully automated and passive
- Low cost
- Supports the Army XXI thrust to:

"Take the equipment in inventory today...and enhance them with information age technology."

General Dennis J. Reimer, Chief of Staff, Army

Problem — Bias Errors at Extended Ranges

- Bias Error (MPI Error) Variation of the mean impact from the Aim Point
- Precision Error Variation of round impacts about the mean
- Target Location Error Variation of the Aim Point to the Target

Current Procedures

- Forward observers for estimating miss distances and communicating information back to shooter
 - Increasingly hazardous for deeper attacks
- Patterned fires to assure coverage
 - Consumes large number of rounds per mission

GPS Auto-Registration Approach

Translator Implementation

- Captures and re-transmits GPS signals to a Ground Based Receiver
 - Translator electronics located in fuze module
- GPS receivers located at Ground Based Receiver process GPS signals to estimate projectile positions
 - Advances in GPS receivers do not impact fuze inventory

Advantages of GPS System

- Provides position data accuracy which is range independent
- Provides all-weather capability
- Leverages Army and Navy development activities on small, low cost GPS technology for projectiles

GPS Position Estimation

- Based on simultaneous measurement to four satellite positions
- Provides position of the capturing antenna on the projectile

Translator System Block Diagram

GPS Auto-Registration Fuze Module

Located on Ground

Ground Based Receiver

Translated GPS Signal

2.266 GHz Translated from Original 1.575 GHz

GPS Auto-Registration Fuze

- L-Band to S-Band Frequency Translator
- Compatible with both GPS signal formats
- Downlink frequency selectable via inductive setting process
- Standard NATO Form Factor

Projected Accuracy Improvements

Impact of Effectiveness

		Number of Rounds Required (F _c = 0.3)	
Scenario	Range	Predicted Fire Without Auto-Registration	With Auto-Registration Corrections
M198 HowitzerStandard METM483A1 Projectile	15 Km	115	15
M198 Howitzer2 Hour METM549A1 Projectile	25 Km	78	27

Program Summary

Current Contract

- Alliant Techsystems developing system to demonstrate real time system function
- Cooperative development with ARDEC and ARL
- Demonstration in October, 1998

What Next

- Fuze module design merging fuzing and auto-registration functions
- Explore expanded uses of trajectory data in the Digital Battlefield

Payoff

- Increased effectiveness of current inventory projectiles at low cost
- Reduced logistics burden
- Increases survivability

